Math 436 midterm (practice)

Name:

This exam has 8 questions, for a total of 100 points. Please answer each question in the space provided. No aids are permitted. Question 1. (10 pts)
(a) State the definition of a topology on a set X.
(b) Find a family of open subsets of the real line \mathbb{R} whose intersection is not open.

Question 2. (10 pts)
(a) State the definition of compactness.
(b) Is it possible for a discrete space to be compact? Explain.

Question 3. (10 pts)
Let $f: X \rightarrow \mathbb{R}$ be a continuous function on a topological space X. Suppose U is an open set of X, is $f(U)$ always open in \mathbb{R} ? Explain.

Question 4. (10 pts)
Suppose X is compact space and $f: X \rightarrow \mathbb{R}$ is a continuous real valued function on X. If $f(x)>0$ for all $x \in X$, prove that there exists a number $r>0$ such that $f(x)>r$ for all $x \in X$.

Question 5. (15 pts)
Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be two metric spaces. Suppose $f: X \rightarrow Y$ is a map such that $d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)$ for all $x_{1}, x_{2} \in X$.
(a) Prove that f is injective.
(b) Prove that f is continuous.

Question 6. (10 pts)
Let X be a discrete topological space with at least two distinct points. Show that X is not connected.

Question 7. (15 pts)

(a) Let A and B be two connected subsets of \mathbb{R}. If $A \cap B \neq \emptyset$, show that $A \cap B$ is connected.
(b) Find two connected subsets C and D of \mathbb{R}^{2} such that $C \cap D \neq \emptyset$ and $C \cap D$ is not connected.

Question 8. (20 pts)

Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous real-valued function on $[0,1]$. The graph $G(f)$ of f is defined to be the following subset of \mathbb{R}^{2} :

$$
\left\{(x, f(x)) \in \mathbb{R}^{2} \mid x \in[0,1]\right\} .
$$

(a) Show that $G(f)$ is compact.
(b) Show that $G(f)$ is homeomorphic to $[0,1]$.

