Math 436 midterm (practice)

Name: ______

This exam has 8 questions, for a total of 100 points.

Please answer each question in the space provided. No aids are permitted.

Question 1. (10 pts)

(a) State the definition of a topology on a set X.

(b) Find a family of open subsets of the real line \mathbb{R} whose intersection is not open.

Question 2. (10 pts)

(a) State the definition of compactness.

(b) Is it possible for a discrete space to be compact? Explain.

Question 3. (10 pts)

Let $f: X \to \mathbb{R}$ be a continuous function on a topological space X. Suppose U is an open set of X, is f(U) always open in \mathbb{R} ? Explain.

Question 4. (10 pts)

Suppose X is compact space and $f: X \to \mathbb{R}$ is a continuous real valued function on X. If f(x) > 0 for all $x \in X$, prove that there exists a number r > 0 such that f(x) > r for all $x \in X$.

Question 5. (15 pts)

Let (X, d_X) and (Y, d_Y) be two metric spaces. Suppose $f: X \to Y$ is a map such that $d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2)$ for all $x_1, x_2 \in X$.

- (a) Prove that f is injective.
- (b) Prove that f is continuous.

Question 6. (10 pts)

Let X be a discrete topological space with at least two distinct points. Show that X is not connected.

Question 7. (15 pts)

- (a) Let A and B be two connected subsets of \mathbb{R} . If $A \cap B \neq \emptyset$, show that $A \cap B$ is connected.
- (b) Find two connected subsets C and D of \mathbb{R}^2 such that $C \cap D \neq \emptyset$ and $C \cap D$ is not connected.

Question 8. (20 pts)

Let $f: [0, 1] \to \mathbb{R}$ be a continuous real-valued function on [0, 1]. The graph G(f) of f is defined to be the following subset of \mathbb{R}^2 :

$$\{(x, f(x)) \in \mathbb{R}^2 \mid x \in [0, 1]\}.$$

(a) Show that G(f) is compact.

(b) Show that G(f) is homeomorphic to [0, 1].